Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Biochem Behav ; 239: 173767, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608960

RESUMO

RATIONALE: The subjective effects of alcohol are associated with alcohol use disorder (AUD) vulnerability and treatment outcomes. The interoceptive effects of alcohol are part of these subjective effects and can be measured in animal models using drug discrimination procedures. The newly developed mGlu2 and mGlu3 negative allosteric modulators (NAMs) are potential therapeutics for AUD and may alter interoceptive sensitivity to alcohol. OBJECTIVES: To determine the effects of mGlu2 and mGlu3 NAMs on the interoceptive effects of alcohol in rats. METHODS: Long-Evans rats were trained to discriminate the interoceptive stimulus effects of alcohol (2.0 g/kg, i.g.) from water using both operant (males only) and Pavlovian (male and female) drug discrimination techniques. Following acquisition training, an alcohol dose-response (0, 0.5, 1.0, 2.0 g/kg) experiment was conducted to confirm stimulus control over behavior. Next, to test the involvement of mGlu2 and mGlu3, rats were pretreated with the mGlu2-NAM (VU6001966; 0, 3, 6, 12 mg/kg, i.p.) or the mGlu3-NAM (VU6010572; 0, 3, 6, 12 mg/kg, i.p.) before alcohol administration (2.0 g/kg, i.g.). RESULTS: In Pavlovian discrimination, male rats showed greater interoceptive sensitivity to 1.0 and 2.0 g/kg alcohol compared to female rats. Both mGlu2-NAM and mGlu3-NAM attenuated the interoceptive effects of alcohol in male and female rats using Pavlovian and operant discrimination. There may be a potential sex difference in response to the mGlu2-NAM at the highest dose tested. CONCLUSIONS: Male rats may be more sensitive to the interoceptive effects of the 2.0 g/kg alcohol training dose compared to female rats. Both mGlu2-and mGlu3-NAM attenuate the interoceptive effects of alcohol in male and female rats. These drugs may have potential for treatment of AUD in part by blunting the subjective effects of alcohol.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38417478

RESUMO

BACKGROUND: The cannabis plant contains several cannabinoids, and many terpenoids that give cannabis its distinctive flavoring and aroma. Δ9-Tetrahydrocannabinol (Δ9-THC) is the plant's primary psychoactive constituent. Given the abuse liability of Δ9-THC, assessment of the psychoactive effects of minor cannabinoids and other plant constituents is important, especially for compounds that may be used medicinally. This study sought to evaluate select minor cannabinoids and terpenes for Δ9-THC-like psychoactivity in mouse Δ9-THC drug discrimination and determine their binding affinities at CB1 and CB2 receptors. METHODS: Δ9-THC, cannabidiol (CBD), cannabinol (CBN), cannabichromene (CBC), cannabichromenevarin (CBCV), Δ8-tetrahydrocannabinol (Δ8-THC), (6aR,9R)-Δ10-tetrahydrocannabinol [(6aR,9R)-Δ10-THC], Δ9-tetrahydrocannabinol varin (THCV), ß-caryophyllene (BC), and ß-caryophyllene oxide (BCO) were examined. RESULTS: All minor cannabinoids showed measurable cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor binding, with CBC, CBCV, and CBD, showing the weakest CB1 receptor binding affinity. BC and BCO exhibited negligible affinity for both CB1 and CB2 receptors. In drug discrimination, only Δ8-THC fully substituted for Δ9-THC, while CBN and (6aR,9R)-Δ10-THC partially substituted for Δ9-THC. THCV and BCO did not alter the discriminative stimulus effects of Δ9-THC. CONCLUSION: In summary, only some of myriad cannabinoids and other chemicals found in the cannabis plant bind potently to the identified cannabinoid receptors. Further, only four of the compounds tested herein [Δ9-THC, Δ8-THC, (6aR,9R)-Δ10-THC, and CBN] produced Δ9-THC-like discriminative stimulus effects, suggesting they may possess cannabimimetic subjective effects. Given that the medicinal properties of phytocannabinoids and terpenoids are being investigated scientifically, delineation of their potential adverse effects, including their ability to produce Δ9-THC-like intoxication, is crucial.


Assuntos
Canabidiol , Canabinoides , Cannabis , Camundongos , Animais , Dronabinol/farmacologia , Terpenos/farmacologia , Canabinoides/farmacologia , Canabinoides/metabolismo , Cannabis/metabolismo , Canabidiol/farmacologia , Canabinol/farmacologia
3.
Psychopharmacology (Berl) ; 241(2): 305-314, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37870564

RESUMO

RATIONALE: Combinations of mu and kappa-opioid receptor (KOR) agonists have been proposed as analgesic formulations with reduced abuse potential. The feasibility of this approach has been increased by the development of KOR agonists with biased signaling profiles that produce KOR-typical antinociception with fewer KOR-typical side effects. OBJECTIVE: The present study determined if the biased KOR agonists, nalfurafine and triazole 1.1, could reduce choice for oxycodone in rhesus monkeys as effectively as the typical KOR agonist, salvinorin A. METHODS: Adult male rhesus monkeys (N = 5) responded under a concurrent schedule of food delivery and intravenous cocaine injections (0.018 mg/kg/injection). Once trained, cocaine (0.018 mg/kg/injection) or oxycodone (0.0056 mg/kg/injection) was tested alone or in combination with contingent injections of salvinorin A (0.1-3.2 µg/kg/injection), nalfurafine (0.0032-0.1 µg/kg/injection), triazole 1.1 (3.2-100.0 µg/kg/injection), or vehicle. In each condition, the cocaine or oxycodone dose, as well as the food amount, was held constant across choice components, while the dose of the KOR agonist was increased across choice components. RESULTS: Cocaine and oxycodone were chosen over food on more than 80% of trials when administered alone or contingently with vehicle. When KOR agonists were administered contingently with either cocaine or oxycodone, drug choice decreased in a dose-dependent manner. Salvinorin A and triazole 1.1 decreased drug-reinforcer choice without altering total trials completed (i.e., choice allocation shifted to food), while nalfurafine dose dependently decreased total trials completed. CONCLUSIONS: These results demonstrate that salvinorin A and triazole 1.1, but not nalfurafine, selectively reduce cocaine and oxycodone self-administration independent of nonspecific effects on behavior, suggesting that G-protein bias does not appear to be a moderating factor in this outcome. Triazole 1.1 represents an important prototypical compound for developing novel KOR agonists as deterrents for prescription opioid abuse.


Assuntos
Cocaína , Diterpenos Clerodânicos , Morfinanos , Oxicodona , Compostos de Espiro , Animais , Masculino , Oxicodona/farmacologia , Analgésicos Opioides/farmacologia , Macaca mulatta , Preparações Farmacêuticas , Autoadministração , Cocaína/farmacologia , Triazóis , Receptores Opioides kappa/agonistas , Relação Dose-Resposta a Droga
4.
Neuropharmacology ; 245: 109827, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154512

RESUMO

Substitutions to the phenethylamine structure give rise to numerous amphetamines and cathinones, contributing to an ever-growing number of abused novel psychoactive substances. Understanding how various substitutions affect the pharmacology of phenethylamines may help lawmakers and scientists predict the effects of newly emerging drugs. Here, we established structure-activity relationships for locomotor stimulant and monoamine transporter effects of 12 phenethylamines with combinations of para-chloro, ß-keto, N-methyl, or N-ethyl additions. Automated photobeam analysis was used to evaluate effects of drugs on ambulatory activity in mice, whereas in vitro assays were used to determine activities at transporters for dopamine (DAT), norepinephrine (NET), and 5-HT (SERT) in rat brain synaptosomes. In mouse studies, all compounds stimulated locomotion, except for 4-chloro-N-ethylcathinone. Amphetamines were more potent stimulants than their ß-keto counterparts, while para-chloro amphetamines tended to be more efficacious than unsubstituted amphetamines. Para-chloro compounds also produced lethality at doses on the ascending limbs of their locomotor dose-effect functions. The in vitro assays showed that all compounds inhibited uptake at DAT, NET, and SERT, with most compounds also acting as substrates (i.e., releasers) at these sites. Unsubstituted compounds displayed better potency at DAT and NET relative to SERT. Para-chloro substitution or increased N-alkyl chain length augmented relative potency at SERT, while combined para-chloro and N-ethyl substitutions reduced releasing effects at NET and DAT. These results demonstrate orderly SAR for locomotor stimulant effects, monoamine transporter activities, and lethality induced by phenethylamines. Importantly, 4-chloro compounds produce toxicity in mice that suggests serious risk to humans using these drugs in recreational contexts.


Assuntos
Alcaloides , Estimulantes do Sistema Nervoso Central , Humanos , Ratos , Camundongos , Animais , Anfetaminas/farmacologia , Alcaloides/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Relação Estrutura-Atividade , Proteínas de Transporte , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina , Proteínas da Membrana Plasmática de Transporte de Norepinefrina
5.
J Pharmacol Exp Ther ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135508

RESUMO

The cognitive impairments that are often observed in patients with alcohol use disorder (AUD) partially contribute to the extremely low rates of treatment initiation and adherence. Brain acetylcholine receptors (AChR) mediate and modulate cognitive and reward-related behavior and their distribution can be altered by long-term heavy drinking. Therefore, AChRs are promising pharmacotherapeutic targets for treating the cognitive symptoms of AUD. In the present study, the pro-cognitive efficacy of two AChR agonists, xanomeline and varenicline, were evaluated in group-housed monkeys who self-administered ethanol for more than one year. The muscarinic AChR antagonist scopolamine was used to disrupt performance of a serial stimulus discrimination and reversal (SDR) task designed to probe cognitive flexibility, defined as the ability to modify a previously learned behavior in response to a change in reinforcement contingencies. The ability of xanomeline and varenicline to remediate the disruptive effects of scopolamine was compared between dominant and subordinate monkeys, with lighter and heavier drinking histories, respectively. We hypothesized that subordinate monkeys would be more sensitive to all three drugs. Scopolamine dose-dependently impaired performance on the serial SDR task in all monkeys at doses lower than those that produced non-specific impairments (e.g, sedation); its potency did not differ between dominant and subordinate monkeys. However, both AChR agonists were effective in remediating the scopolamine-induced deficit in subordinate monkeys, but not in dominant monkeys. These findings suggest xanomeline and varenicline may be effective for enhancing cognitive flexibility in individuals with a history of heavy drinking. Significance Statement Pro-cognitive effects of two acetylcholine (Ach) receptor agonists were assessed in group-housed monkeys who had several years' experience drinking ethanol. The muscarinic ACh receptor agonist xanomeline and the nicotinic ACh receptor agonist varenicline reversed a cognitive deficit induced by the muscarinic ACh receptor antagonist scopolamine. However, this effect was observed only in lower-ranking (subordinate) monkeys and not higher-ranking (dominant monkeys). Results suggest that ACh agonists may effectively remediate alcohol-induced cognitive deficits in a subpopulation of those with alcohol use disorder.

6.
Bioorg Med Chem Lett ; 94: 129427, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541631

RESUMO

G protein-coupled receptor 3 (GPR3) is an orphan receptor potentially involved in many important physiological processes such as drug abuse, neuropathic pain, and anxiety and depression related disorders. Pharmacological studies of GPR3 have been limited due to the restricted number of known agonists and inverse agonists for this constitutively active receptor. In this medicinal chemistry study, we report the discovery of GPR3 agonists based off the diphenyleneiodonium (DPI) scaffold. The most potent full agonist was the 3-trifluoromethoxy analog (32) with an EC50 of 260 nM and 90% efficacy compared to DPI. Investigation of a homology model of GPR3 from multiple sequence alignment resulted in the finding of a binding site rich in potential π-π and π-cation interactions stabilizing DPI-scaffold agonists. MMGBSA free energy analysis showed a good correlation with trends in observed EC50s. DPI analogs retained the same high receptor selectivity for GPR3 over GPR6 and GPR12 as observed with DPI. Collectively, the DPI analog series shows that order of magnitude improvements in potency with the scaffold were attainable; however, attempts to replace the iodonium ion to make the scaffold more druggable failed.


Assuntos
Agonismo Inverso de Drogas , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/agonistas , Oniocompostos , Sítios de Ligação
7.
Pathophysiology ; 30(2): 144-154, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37092527

RESUMO

To avoid criminal prosecution, clandestine chemists produce designer stimulants that mimic the pharmacological and psychoactive effects of conventional stimulants, such as methamphetamine. Following persistent or high-dose exposure, both acute vasoconstriction and loss of vascular homeostasis are reported dangers of conventional stimulants, and designer stimulants may pose even greater dangers. To compare the effects of a conventional stimulant and two designer stimulants on vascular contraction, this study examined the direct effects of 1,3-benzodioxolylbutanamine (BDB) and N-butylpentylone in comparison to methamphetamine on the function of human brain vascular smooth muscle cells (HBVSMCs). HBVSMCs suspended in collagen gels were exposed to varying concentrations of each drug, and the degree of constriction was assessed over one week. The MTT assay was used to measure the impact of the three drugs on the cellular metabolic activity as a marker of cellular toxicity. The highest concentration tested of either methamphetamine or N-butylpentylone produced a loss of HBVSMC contractility and impaired cellular metabolism. BDB showed a similar pattern of effects, but, uniquely, it also induced vasoconstrictive effects at substantially lower concentrations. Each drug produced direct effects on HBVSMC contraction that may be a mechanism by which the cardiovascular system is damaged following high-dose or persistent exposure, and this could be exacerbated by any sympathomimetic effects of these compounds in whole organisms. BDB appears to impact HBVSMC function in ways distinct from methamphetamine and N-butylpentylone, which may present unique dangers.

8.
ACS Chem Neurosci ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36976755

RESUMO

Methamphetamine (METH) is a psychostimulant that primarily exerts its effects on the catecholamine (dopamine (DA) and norepinephrine (NE)) systems, which are implicated in drug addiction. METH exists as two distinct enantiomers, dextrorotatory (d) and levorotatory (l). In contrast to d-METH, the major component of illicit METH used to induce states of euphoria and alertness, l-METH is available without prescription as a nasal decongestant and has been highlighted as a potential agonist replacement therapy to treat stimulant use disorder. However, little is known regarding l-METH's effects on central catecholamine transmission and behavior. In this study, we used fast-scan cyclic voltammetry to elucidate how METH isomers impact NE and DA transmission in two limbic structures, the ventral bed nucleus of the stria terminalis (vBNST) and nucleus accumbens (NAc), respectively, of anesthetized rats. In addition, the dose-dependent effects of METH isomers on locomotion were characterized. d-METH (0.5, 2.0, 5.0 mg/kg) enhanced both electrically evoked vBNST-NE and NAc-DA concentrations and locomotion. Alternatively, l-METH increased electrically evoked NE concentration with minimal effects on DA regulation (release and clearance) and locomotion at lower doses (0.5 and 2.0 mg/kg). Furthermore, a high dose (5.0 mg/kg) of d-METH but not l-METH elevated baseline NE and DA concentrations. These results suggest mechanistic differences between NE and DA regulation by the METH isomers. Moreover, l-METH's asymmetric regulation of NE relative to DA may have distinct implications in behaviors and addiction, which will set the neurochemical framework for future studies examining l-METH as a potential treatment for stimulant use disorders.

9.
Neuropsychopharmacology ; 47(12): 2132-2139, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35906489

RESUMO

The high efficacy mu-opioid receptor (MOR) agonist methadone is an effective opioid use disorder (OUD) medication used exclusively in opioid-dependent patients. However, methadone has undesirable effects that limit its clinical efficacy. Intermediate efficacy MOR agonists may treat OUD with fewer undesirable effects. We compared the effects of methadone with the intermediate efficacy MOR agonist TRV130 (oliceridine) on fentanyl-vs.-food choice and somatic withdrawal signs in opioid-dependent and post-opioid-dependent rats. Male rats (n = 20) were trained under a fentanyl-vs.-food choice procedure. Rats were then provided extended fentanyl (3.2 µg/kg/infusion) access (6 p.m.-6 a.m.) for 10 days to produce opioid dependence/withdrawal. Rats were treated with vehicle (n = 7), TRV130 (3.2 mg/kg; n = 8), or methadone (3.2 mg/kg; n = 5) three times per day after each extended-access session (8:30 a.m., 11 a.m., 1:30 p.m.). Withdrawal sign scoring (1:55 p.m.) and choice tests (2-4 p.m.) were conducted daily. Vehicle, TRV130, and methadone effects on fentanyl choice were redetermined in post-opioid-dependent rats. Vehicle-, TRV130-, and methadone-treated rats had similar fentanyl intakes during extended access. Vehicle-treated rats exhibited increased withdrawal signs and decreased bodyweights. Both methadone and TRV130 decreased these withdrawal signs. TRV130 was less effective than methadone to decrease fentanyl choice and increase food choice in opioid-dependent rats. Neither methadone nor TRV130 decreased fentanyl choice in post-opioid-dependent rats. Results suggest that higher MOR activation is required to reduce fentanyl choice than withdrawal signs in fentanyl-dependent rats. Additionally, given that TRV130 did not precipitate withdrawal in opioid-dependent rats, intermediate efficacy MOR agonists like TRV130 may facilitate the transition of patients with OUD from methadone to lower efficacy treatments like buprenorphine.


Assuntos
Buprenorfina , Transtornos Relacionados ao Uso de Opioides , Síndrome de Abstinência a Substâncias , Analgésicos Opioides , Animais , Buprenorfina/farmacologia , Fentanila/farmacologia , Masculino , Metadona/farmacologia , Metadona/uso terapêutico , Entorpecentes , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Ratos , Receptores Opioides , Compostos de Espiro , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Tiofenos
10.
Biomolecules ; 12(7)2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35883447

RESUMO

Epithelial-mesenchymal transition (EMT) is a crucial process in which the polarized epithelial cells acquire the properties of mesenchymal cells and gain invasive properties. We have previously demonstrated that manganese superoxide dismutase (MnSOD) can regulate the EMT phenotype by modulating the intracellular reactive oxygen species. In this report, we have demonstrated the EMT-suppressive effects of 2,3,5,6-Tetramethylpyrazine (TMP, an alkaloid isolated from Chuanxiong) in colon cancer cells. TMP suppressed the expression of MnSOD, fibronectin, vimentin, MMP-9, and N-cadherin with a parallel elevation of occludin and E-cadherin in unstimulated and TGFß-stimulated cells. Functionally, TMP treatment reduced the proliferation, migration, and invasion of colon cancer cells. TMP treatment also modulated constitutive activated as well as TGFß-stimulated PI3K/Akt/mTOR, Wnt/GSK3/ß-catenin, and MAPK signaling pathways. TMP also inhibited the EMT program in the colon cancer cells-transfected with pcDNA3-MnSOD through modulation of MnSOD, EMT-related proteins, and oncogenic pathways. Overall, these data indicated that TMP may inhibit the EMT program through MnSOD-mediated abrogation of multiple signaling events in colon cancer cells.


Assuntos
Neoplasias do Colo , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Quinase 3 da Glicogênio Sintase , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Pirazinas , Superóxido Dismutase/genética , Fator de Crescimento Transformador beta/metabolismo
11.
Eur J Pharmacol ; 928: 175113, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35750234

RESUMO

Withaferin A (WFA), a withanolide, is isolated from plants of Withania somnifera (L.) Dual (Solanaceae), known as Indian ginseng, Indian winter cherry or Ashwagandha. It has been reported to exert multifaceted anti-neoplastic effects. Here, we analyzed the impact of WFA on apoptosis and autophagy activation in different human colorectal cancer cell lines. We observed that WFA exposure caused an increased aggregation of cells in the subG1 arrest in cell cycle, and increased the number of late apoptotic cells. WFA also induced the apoptosis via PARP and caspase-3 cleavage accompanied with suppression of levels of anti-apoptotic proteins like Bcl-2 and Bcl-xl. The influence of WFA on autophagy was validated by acridine orange, MDC staining, and immunocytochemistry of LC3. It was found that 24 h treatment of WFA increased the acridine and MDC stained autophagosome with induced the LC3 and other autophagy markers Atg7 and beclin-1 activation. We used Z-DEVD-FMK, a caspase-3 blocker, and 3-MA, an autophagy inhibitor, to confirm whether these effects were specific to apoptosis and autophagy, and observed the recovery of both these processes upon exposure to WFA. Moreover, the activation of ß-catenin protein was attenuated by WFA. Interestingly, small interfering RNA (siRNA)-promoted ß-catenin knockdown augmented the WFA-induced active form of p-GSK-3ß, and stimulated autophagy and apoptosis through PARP and LC3 activation. These findings suggested that WFA could stimulate activation of both apoptosis and autophagy process via modulating ß-catenin pathway.


Assuntos
Neoplasias Colorretais , Vitanolídeos , Apoptose , Autofagia , Caspase 3/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Vitanolídeos/farmacologia , Vitanolídeos/uso terapêutico , beta Catenina
12.
Biochimie ; 200: 119-130, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35654241

RESUMO

Renal cell carcinoma (RCC), also called kidney cancer, is one of the most common malignancies worldwide, including the United States and China. Because of the characteristics of RCC that are both insidious and largely insensitive to chemo-radiation, the incidence and mortality of RCC are increasing every year. However, there are few studies describing anti-cancer effects of the natural compounds on RCC as compared to other cancers. Here, we analyzed the anti-neoplastic impact of Tanshinone IIA (TSN) on RCC cells. We noted that TSN increased the expression of LC3 proteins while having little effect on PARP and Alix protein expression. We found that TSN up-regulated the expression of autophagy-related proteins such as Atg7 and Beclin-1. Moreover, TSN promoted the formation of autophagic vacuoles such as autophagosomes and autolysosomes. However, treatment with 3-Methyladenine (3-MA) or Chloroquine (CQ), slightly decreased the ability of TSN to induce autophagy, but still autophagy occurred. In addition, TSN inhibited translocation of ß-catenin into the nucleus, and ß-catenin deletion and TSN treatment in RCC increased the expression of LC3 protein. Overall, our findings indicate that TSN can exert significant anti-tumor effects through down-regulation of ß-catenin to induce autophagic cell death.


Assuntos
Morte Celular Autofágica , Carcinoma de Células Renais , Neoplasias Renais , Abietanos , Apoptose , Autofagia , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Neoplasias Renais/tratamento farmacológico , beta Catenina/metabolismo
13.
Pharmacol Biochem Behav ; 217: 173394, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35513117

RESUMO

Kappa-opioid receptor (KOR) agonists have been studied as potential treatments for pain, pruritus, and substance-use disorders, but prototypical KOR agonists produce side-effects like dysphoria and sedation. Atypical KOR agonists that exhibit G-protein biased signaling at the KOR have been reported to produce therapeutic-like effects with fewer or reduced side effects relative to prototypical KOR agonists. In the current report, behavioral profiles were determined using a behavioral scoring system that was modified to quantify drug-induced behaviors in nonhuman primates (NHPs). Profiles were determined for a prototypical and two biased KOR agonists, alone and combined with the mu-opioid receptor (MOR) agonist, oxycodone. Five adult male rhesus monkeys implanted with intravenous catheters were administered a range of doses of the KOR agonist, U50-488H (0.01-0.1 mg/kg) and the biased KOR agonists, nalfurafine (0.0001-0.001 mg/kg) and triazole 1.1 (0.32-1.0 mg/kg), alone and combined with the MOR agonist, oxycodone (0.01-0.32 mg/kg). In addition, the largest triazole 1.1 dose tested (1.0 mg/kg) was administered in time-course determinations (0-56 min), alone and combined with oxycodone (0.1 mg/kg). U50-488H and nalfurafine produced sedative-like and motor-impairing effects. Triazole 1.1 had a milder side-effect profile, in some instances producing sedative-like effects but to a lesser degree compared with the other KOR agonists, particularly for lip droop and rest/sleep posture. All KOR agonists reduced oxycodone-induced scratch, but nalfurafine produced behavior-disrupting and sedative-like effects when combined with oxycodone that were not observed with triazole 1.1. The duration of triazole 1.1's behavioral effects was relatively short, dissipating entirely by 56 min. Our results suggest that KOR agonists with comparable pharmacology to triazole 1.1 may be useful therapeutics with reduced side-effect profiles, and the mechanisms conferring these benefits may be attributed to factors other than G-protein bias.


Assuntos
Analgésicos Opioides , Oxicodona , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Animais , Proteínas de Ligação ao GTP , Hipnóticos e Sedativos , Macaca mulatta/metabolismo , Masculino , Morfinanos , Oxicodona/farmacologia , Receptores Opioides kappa/agonistas , Compostos de Espiro , Triazóis/farmacologia
14.
ACS Chem Neurosci ; 13(7): 1082-1095, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35325532

RESUMO

Human trace amine-associated receptor subtype 1 (hTAAR1) is a G protein-coupled receptor that has therapeutic potential for multiple diseases, including schizophrenia, drug addiction, and Parkinson's disease (PD). Although several potent agonists have been identified and have shown positive results in various clinical trials for schizophrenia, the discovery of potent hTAAR1 antagonists remains elusive. Herein, we report the results of structure-activity relationship studies that have led to the discovery of a potent hTAAR1 antagonist (RTI-7470-44, 34). RTI-7470-44 exhibited an IC50 of 8.4 nM in an in vitro cAMP functional assay, a Ki of 0.3 nM in a radioligand binding assay, and showed species selectivity for hTAAR1 over the rat and mouse orthologues. RTI-7470-44 displayed good blood-brain barrier permeability, moderate metabolic stability, and a favorable preliminary off-target profile. Finally, RTI-7470-44 increased the spontaneous firing rate of mouse VTA dopaminergic neurons and blocked the effects of the known TAAR1 agonist RO5166017. Collectively, this work provides a promising hTAAR1 antagonist probe that can be used to study TAAR1 pharmacology and the potential therapeutic role in hypodopaminergic diseases such as PD.


Assuntos
Neurônios Dopaminérgicos , Receptores Acoplados a Proteínas G , Animais , Neurônios Dopaminérgicos/metabolismo , Humanos , Camundongos , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
15.
Neurotoxicology ; 88: 65-78, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742947

RESUMO

Synthetic cathinones are used as stimulants of abuse. Many abused drugs, including stimulants, activate nuclear factor-κB (NF-κB) transcription leading to increases in NF-κB-regulated pro-inflammatory cytokines, and the level of inflammation appears to correlate with length of abuse. The purpose of this study was to measure the profile of IL-1α, IL-1ß, IL-6, CCL2 and TNF-α in brain and plasma to examine if drug exposure alters inflammatory markers. Male and female Sprague-Dawley rats were trained to self-administer α-pyrrolidinopentiophenone (α-PVP) (0.1 mg/kg/infusion), 4-methylmethcathinone (4MMC) (0.5 mg/kg/infusion), or saline through autoshaping, and then self-administered for 21 days during 1 h (short access; ShA) or 6 h (long access; LgA) sessions. Separate rats were assigned to a naïve control group. Cytokine levels were examined in amygdala, hippocampus, hypothalamus, prefrontal cortex, striatum, thalamus, and plasma. Rats acquired synthetic cathinone self-administration, and there were no sex differences in drug intake. Synthetic cathinone self-administration produced sex differences in IL-1α, IL-1ß, IL-6, CCL2 and TNF-α levels. There were widespread increases in inflammatory cytokines in the brains of male rats compared to females, particularly for 4MMC, whereas females were more likely to show increased inflammatory cytokines in plasma compared to saline groups than males. Furthermore, these sex differences in cytokine levels were more common after LgA access to synthetic cathinones than ShA. These results suggest that synthetic cathinone use likely produces sex-selective patterns of neuroinflammation during the transition from use to abuse. Consequently, treatment need may differ depending on the progression of synthetic cathinone abuse and based on sex.


Assuntos
Alcaloides/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Citocinas/análise , Alcaloides/administração & dosagem , Animais , Química Encefálica/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/administração & dosagem , Quimiocina CCL2/análise , Quimiocina CCL2/sangue , Citocinas/sangue , Feminino , Interleucina-1alfa/análise , Interleucina-1alfa/sangue , Interleucina-1beta/análise , Interleucina-1beta/sangue , Interleucina-6/análise , Interleucina-6/sangue , Masculino , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/metabolismo , Ratos , Ratos Sprague-Dawley , Autoadministração , Fatores Sexuais , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/sangue
16.
Psychopharmacology (Berl) ; 238(12): 3463-3476, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34430992

RESUMO

RATIONALE: Triazole 1.1 is a novel kappa-opioid receptor (KOR) agonist reported to produce antinociception without KOR-typical adverse effects. When combined with the mu-opioid receptor (MOR) agonist, oxycodone, triazole 1.1 blocks oxycodone-induced pruritis without producing sedation-like effects in nonhuman primates. However, it is unknown if triazole 1.1 can reduce the abuse-related effects or enhance the antinociceptive effects of oxycodone similarly to other KOR agonists. OBJECTIVES: The aim of the present study was to quantitatively compare the behavioral effects of triazole 1.1 to the KOR agonists, U50,488h and nalfurafine, on oxycodone self-administration and oxycodone-induced thermal antinociception when administered as mixtures with oxycodone. METHODS: In the self-administration study, male Sprague-Dawley (SD) rats (n = 6) self-administered intravenous (i.v.) oxycodone alone (0.056 mg/kg/inj) or combined with U50,488 h (0.032-0.32 mg/kg/inj), nalfurafine (0.00032-0.0032 mg/kg/inj), or triazole 1.1 (0.32-1.8 mg/kg/inj) under a progressive-ratio schedule of reinforcement. In a hot plate assay, male SD rats (n = 6) received i.v. injections of oxycodone (1.0-5.6 mg/kg), U50,488h (1.0-18.0 mg/kg), nalfurafine (0.01-1.0 mg/kg), or triazole 1.1 (3.2-32.0 mg/kg) alone or in combinations of fixed proportion with oxycodone based on the relative potencies of the single drugs. Each study concluded with administration of the KOR antagonist nor-BNI and some degree of retesting of the previous conditions to verify that the behavioral effects were mediated by KOR activation. RESULTS: All KOR agonists reduced oxycodone self-administration in a dose-dependent manner. Moreover, all single drugs and drug combinations produced dose-dependent, fully efficacious thermal antinociception. All KOR agonist:oxycodone combinations produced either additive or super-additive thermal antinociception. Finally, each KOR agonist was blocked in effect by nor-BNI in both behavioral measures. CONCLUSION: This study demonstrates that triazole 1.1 reduces oxycodone's reinforcing effects and enhances oxycodone-induced antinociception to degrees that are comparable to typical KOR agonists. Given triazole 1.1's mild adverse-effect profile, developing MOR-KOR agonist combinations from the triazole 1.1 series may render new pain therapeutics with reduced abuse liability.


Assuntos
Nociceptividade/efeitos dos fármacos , Oxicodona , Receptores Opioides kappa , Triazóis , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida , Analgésicos Opioides/farmacologia , Animais , Relação Dose-Resposta a Droga , Masculino , Oxicodona/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Opioides kappa/agonistas , Receptores Opioides mu , Autoadministração , Triazóis/farmacologia
17.
Life Sci ; 284: 119893, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454947

RESUMO

AIMS: Tumor cells metastasis as well as proliferation are important factors that can substantially determines the prognosis of cancer. In particular, epithelial-mesenchymal transition (EMT) is key phenomena which can cause tumor cell transition into other organs by promoting the disruption of the cell-cell junctions. Because oxymatrine (OMT) have been reported to attenuate the tumor growth, we investigated whether OMT can down-regulate EMT process in tumor cells. We also focused on transforming growth factor-ß (TGF-ß)-induced EMT process because EMT process can be significantly induced by this growth factor. MAIN METHODS: The cell viability was measured by MTT and real time cell analysis (RTCA) assay. The expression levels of various proteins involved in the regulation of EMT and Akt/mTOR/PI3K signaling pathway were evaluated by Western blot analysis. mRNA levels of several important EMT markers were analyzed by reverse transcription polymerase chain reaction (RT-PCR). The effects of OMT on the cellular invasion and migration were evaluated by RTCA, wound healing assay, and boyden chamber assays. KEY FINDINGS: OMT suppressed the expression of both constitutive and TGF-ß-induced mesenchymal markers, such as fibronectin, vimentin, MMP-9, MMP-2, N-cadherin, Twist, and Snail, but induced the levels of epithelial markers. Moreover, OMT down-regulated oncogenic PI3K/Akt/mTOR pathways which lead to a significant attenuation of invasive and migratory potential of lung cancer cells. SIGNIFICANCE: Overall, our study established a novel anti-metastatic role of OMT against human lung cancer cells.


Assuntos
Alcaloides/farmacologia , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/patologia , Quinolizinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Alcaloides/química , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Modelos Biológicos , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolizinas/química , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta/farmacologia
19.
FEMS Microbiol Lett ; 368(11)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34089315

RESUMO

Host-directed therapies (HDTs) could enhance the activity of traditional antibiotics. AR-12 is a promising HDT against intracellular pathogens including Salmonella enterica serovar Typhimurium, and has been shown to act through modulation of autophagy and the Akt kinase pathway. Since AR-12 does not inhibit the growth of planktonic bacteria but only works in conjunction with the infected host-cell, we hypothesized that AR-12 could enhance the activity of antibiotics in less-susceptible strains in the intracellular host environment. We found that repetitive passaging of S. typhimurium in macrophages in the absence of antibiotics led to a 4-fold reduction in their intracellular susceptibility to streptomycin (STR), but had no effect on the bacteria's sensitivity to AR-12. Moreover, when the host-passaged strains were treated with a combined therapy of AR-12 and STR, there was a significant reduction of intracellular bacterial burden compared to STR monotherapy. Additionally, co-treatment of macrophages infected with multi-drug resistant S. typhimurium with AR-12 and STR or ampicillin showed enhanced clearance of the intracellular bacteria. The drug combination did not elicit this effect on planktonic bacteria. Overall, AR-12 enhanced the clearance of less susceptible S. typhimurium in an intracellular environment.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Pirazóis/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Sinergismo Farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Células RAW 264.7 , Estreptomicina/farmacologia
20.
J Pharmacol Exp Ther ; 378(2): 124-132, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33986037

RESUMO

Monoamine releasers such as d-methamphetamine (d-MA) can reduce cocaine use in laboratory studies and have been forwarded for the management of cocaine use disorder (CUD). However, the proven abuse liability of d-MA has limited enthusiasm for clinical use. The levorotatory isomer of MA, l-MA, appears to have lesser stimulant effects, possibly due to its preferential norepinephrine-releasing properties compared with dopamine. The present study evaluated the abuse potential of l-MA by comparing its reinforcing effects with known stimulant drugs of abuse in nonhuman primates. Adult rhesus macaques (N = 4) responded for intravenous injections of cocaine, d-MA, methcathinone (MCAT), or l-MA under a fixed-ratio (FR) schedule of reinforcement; reinforcing effectiveness was evaluated using behavioral economic demand procedures. In a separate cohort (N = 9), daily activity and food-reinforced responding were assessed during 100 days of treatment with daily dosages of l-MA (2.3 mg/kg per day, i.v.) or d-MA (0.74 mg/kg per day, i.v.) previously shown to decrease cocaine self-administration. Results show that all drugs maintained self-administration, with peak injections reaching ∼100 inj per session for cocaine, MCAT, and d-MA and ∼50 inj per session for l-MA . In demand studies, self-administration of each drug gradually decreased as FR size increased. The exponential model of demand indicated that the reinforcing effectiveness of l-MA was significantly less than the other drugs studied. Chronic l-MA treatment did not appreciably alter daily activity and only transiently suppressed food-reinforced responding. These data, coupled with previous findings that l-MA effectively reduces stimulant self-administration, suggest that l-MA, or other norepinephrine-preferring releasers, may serve as agonist medication for CUD with lesser abuse liability than common psychostimulants. SIGNIFICANCE STATEMENT: Development of pharmacotherapies for cocaine use disorder remains a formidable challenge. Agonist-based therapies show promise, but enthusiasm is tempered by the abuse liability of previously proposed medications. This study evaluated the abuse liability and chronic treatment effects of methamphetamine's levorotatory isomer (l-MA). l-MA demonstrated lower abuse liability compared with commonly abused stimulants and produced few untoward effects. In the context of recent studies demonstrating that l-MA attenuates stimulant self-administration, these findings support l-MA's potential as a pharmacotherapy for stimulant addiction.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Reforço Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...